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Summary 
 
We develop an efficient scheme of illumination analysis 
along a target horizon. With this scheme, we can calculate 
the Directional Illumination (DI) from the sources and the 
Acquisition Dip Response (ADR) along a target horizon in 
very short turnaround time. Therefore, it can be a useful 
tool to study the influence of the model (e.g. salt body) and 
the acquisition system (e.g. shot distribution and aperture 
size). The result can be a guide for acquisition design and 
model building. With the illumination map along the target 
horizon, it also is helpful for the interpretation in areas 
where the image amplitudes are not reliable. Here, we use 
the wave-equation based migration and local plane wave 
decomposition method to get the frequency domain 
illumination in the local angle domain. We pre-calculated 
and saved the angle domain Green’s function along the 
target horizon. These Green’s functions are reusable so that 
we can save a lot of computational and I/O cost. We use the 
3D SEG/EAGE salt model and a real model example to 
demonstrate the validity of our method. 
 
Introduction 
 
Seismic illumination analysis is a useful tool that gives 
potential detecting power of a specific acquisition system 
for a given subsurface structure. For example, if there’s a 
huge salt body in the survey area, which is very common in 
Gulf of Mexico, we usually have illumination issues in the 
subsalt area. The illumination analysis can give us an 
estimation of the energy distribution in those areas, which 
can help us improve our acquisition design and get better 
understanding of the migration image. Both ray tracing 
(Bear et al., 2000) and wave-equation based illumination 
analysis methods (Rickett, 2003; Jin and Xu, 2010) have 
been developed in recent years. Ray-based methods are 
efficient, but will have large errors when the model is 
complex. Therefore we prefer wave-equation based 
methods.  
Because the subsurface structures usually have certain 
dipping angles and the total illumination cannot give us any 
angle information, a lot of effort has been made towards 
angle domain illumination (Wu and Chen, 2006; Xie et al., 
2006; Cao and Wu, 2009). Angle decomposition is very 
expensive, especially in the 3D case. To make the 
calculation more efficient, we made some implementations 
for high performance illumination analysis in the 3D case 
(Mao and Wu, 2007; Mao et al., 2010).  
The source side illumination (DI) is relatively easy to 
calculate. However, the illumination of a source coupled 
with receivers is more important and is a more accurate 
estimation of the subsurface illumination for a given 

acquisition system. We call this kind of illumination 
Acquisition Dip Response (ADR). A similar approach 
using ray-tracing has been reported by Lecomte (2008), and 
is widely used through NORSAR software. However, if the 
target horizon is in a complex area such as subsalt, a wave-
equation propagator is more accurate. 
In order to calculate ADR, we need to calculate the Green’s 
function for every receiver, which is very expensive for a 
large model and large data set. In a real case, we usually 
focus on a horizon which could be a reservoir seal. As a 
result, we proposed to calculate the illumination along a 
target horizon, which is affordable and efficient.  
In this paper, we develop an efficient scheme of 
illumination analysis along a target horizon. Here, we use 
the wave-equation based migration and local plane wave 
decomposition method to get the frequency domain 
illumination in the local angle domain. Since we pre-
calculated and saved the angle domain Green’s function on 
the target horizon, we only need to form the illumination by 
the summation of the Green’s function combination for the 
given acquisition system. This scheme provides a useful 
tool for acquisition design and analyzing the image 
amplitudes. We calculated several numerical examples 
including the DI and ADR maps for the 3D SEG/EAGE 
salt model and a real model on some given target horizons. 
 
Illumination analysis in the local angle domain 
 
For a given acquisition geometry, we use a wave-equation 
based propagator to get the frequency-space domain 
Green’s function from the source s to the subsurface point 
(x,z). The space domain Green’s function can be 
decomposed at the image region to a summation of local 
wavenumber components. That is 

   , , , , , , ,
s

sG z s G z s 
θ

x x θ  ,            (1) 

where  , , ,G z s x  is the frequency-space Green’s 

function and  , , , ,sG z s x θ  is its local-angle 

component at sθ . In the 3D case, sθ is a two dimensional 

vector,  ,  , which are dip angle and azimuthal angle, 

respectively. Similarly, the frequency-space Green’s 
function from the subsurface point (x,z) to receiver r can be 
decomposed 

   , , , , , , ,
r

rG z r G z r 
θ

x x θ ,            (2) 

where  , , ,G z r x  is the frequency-space Green’s 

function and  , , , ,rG z r x θ  is its local-angle 
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Angle domain illumination analysis along a target horizon 

we can also use these maps to compensate for the image 
amplitudes along the target horizon. 
 

 
Figure 7: DI maps for the target horizon. The incident angles for 

these three DI maps are (00,00), (600,00) and (400,2250). 

 
 

Figure 8: ADR maps on the target horizon. The incident angles for 
these three DI maps are (00,00), (600,00) and (400,2250). 

 
Figure 9: Total ADR on the target horizon 

 
Figure 10: ADR maps on the target horizon. The incident angles 

for these three DI maps are (00,00), (600,00) and (400,2250). 

 
Figure 11: Total ADR on the target horizon 

 
Conclusions 
 
We developed an efficient method of angle domain 
illumination analysis along a target horizon. The DI and 
ADR maps on the target horizon can be very useful for 
acquisition design and for the interpreter when the image 
amplitude is unreliable on the horizon. Numerical examples 
of the 3D SEG/EAGE salt model and a field data model 
illustrated the validity and efficiency of the new scheme. 
For further work, we may develop an amplitude 
compensation method to generate AVO friendly angle 
gathers. 
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