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Summary 
 
A 3D inversion based Least-Squares Reverse Time 
Migration (LSRTM) technique was developed. The 
algorithm uses the RTM as the forward modeling and 
inversion engine to minimize the amplitude differences 
between the observed data and the synthetic modeled data. 
In turn, the final LSRTM will deliver the reflectivity model 
that will generate the true corresponding amplitude; the 
migration artifacts are suppressed as well since they are not 
contained in the observed field data. Compared with the 
initial RTM image, the LSRTM images from the synthetic 
data and field data examples show the improved amplitude 
response and higher resolution gained by suppressing 
migration artifacts and sharpening the subsurface 
reflectors’ reflectivity.  
 
 
Introduction 
 
RTM is commonly used for imaging complex structures. It 
provides reliable structural information of the subsurface 
because it is based on the full solution of the two-way wave 
equation. The most common RTM imaging condition is to 
cross-correlate the forward propagated source wavefield 
with the backward propagated receiver wavefield. The 
RTM image constructed from this imaging condition does 
not correspond to the geological reflectivity. The image 
also contains amplitude distortions caused by RTM 
crosstalk artifacts.  
 
In 1993 Schuster proposed an inversion based least-squares 
migration (LSM) on cross-well data . In 1999 Nemeth et al. 
applied this technique to surface data. Their study shows 
that the LSM scheme can noticeably reduce migration 
artifacts and improve lateral spatial resolution. However, 
their forward modeling and migration engine is Kirchhoff 
migration. Recently, one-wave wave equation and two-way 
RTM were used as modeling and migration engine (Tang, 
2008; Dai et al., 2011).  
 
The LSM can be implemented in either model space 
domain (Tang, 2008; Aoki et al., 2009; Dai et al., 2011) or 
time domain (Tang et al., 2009; Dai et al., 2010; Zhan et 
al., 2010). The model space domain approach tries to solve 
the Hessian matrix, in turn only needing a few migration 
iterations, but it requires a lot of memory to solve the 
inversion of the Hessian matrix. In practice the Hessian 
matrix is too big for currently available computer power; 
many have tried to address this issue by approximating the 
Hessian matrix (Tang, 2008; Dai et al., 2011). For the time 

domain approach, there is less memory requirement, but 
multiple migration iterations are needed to solve the 
inversion problem. In order to save the migration iterations, 
the idea of blending data was proposed (Tang et al., 2009; 
Dai et al., 2011).  
 
Besides the memory requirement and computation cost, 
there are still some fundamental issues which need to be 
addressed for the practical application. Considering the 
current computation architecture, we chose the time domain 
approach and used RTM as the engine for the forward 
modeling and migration. In this paper, we will share some 
practical lessons learned for LSRTM from our study. 
 
 
Theory  
 
The forward modeling operator that relates the reflectivity 
model m to scattered seismic data d can be represented by  

Lmd                                         (1) 
where, L represents the forward modeling operator. The 
migration operator is the adjoint of the forward modeling 
and can be represented by (Claerbout, 1992): 

dLm T
mig                                    (2) 

where, 
migm is the migration image. To obtain a better 

reflectivity image, the imaging problem can be represented 
as a least-squares inversion problem. The solution  is 
obtained by minimizing the objective function p(m), which 
is defined as the least-squares difference between the 
forward modeled data and the recorded data 

0d : 

||||)( 0dLmmp                        (3) 

 The iterative solution is:  

])([1 dmLLmm kTkk     (4) 

where,  is the optimized step length, k is number of 
iterations and TL is the migration operator. This equation is 
an iterative approach for LSRTM in the data domain. It is 
actually a process that repeatedly projects the difference 
between the modeled data and the input data to the model 
domain, in order to adjust the reflectivity image. In this 
paper, the Born modeling technique was used to generate 
modeled data from the image.  
 
This procedure is shown in the flow chart in Figure 1. The 
conventional RTM is the first approximation of the 
LSRTM reflectivity model. The reflectivity model is used 
to generate synthetic modeled data. This step is actually a 
de-migration by using Born modeling. Data residual is 
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calculated by subtracting synthetic data from the field data. 
Next, the gradient is calculated by using conventional RTM 
with the data residual.  The gradient is used to adjust the 
reflectivity model. This procedure will be repeated until a 
certain data residual level is reached. Therefore, for each 
iteration of LSRTM, one RTM and one forward modeling 
step needs to be run. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Work flow of LSRTM.  
 
 
Synthetic data example 
 
To validate this technique, the 2D Marmousi model with 
reflectivity (Figure 2A) was used. A marine streamer 
acquisition is simulated for the synthetic data recording. 
The synthetic data set is generated with the finite difference 
solution of the acoustic wave equation with a 20 Hz Ricker 
source wavelet. To simplify the problem, we use the same 
wave equation solver and source wavelet for the RTM and 
the LSRTM. This simplifies the LSRTM on the data 
residual calculation by avoiding the source wavelet and 
wave propagation difference between the input data and 
modeled data. Figure 2C shows the LSRTM image after the 
20th iteration compared with the RTM image (Figure 2B). 
Notice that since the LSRTM tries to solve the reflectivity 
model, the final LSRTM solution is higher resolution 
compared to the RTM image. The lateral resolution in 
LSRTM is also improved so fault images become sharper.   
 
The LSRTM also suppresses migration artifacts, such as 
migration swings and low frequency noise. This is because 
during the LSRTM iterations, the artifacts in images will 
generate fake events in the modeled data, which do not 
exist in the input data. Thus the fake events will generate 
the negative migration artifacts in the residual gradient, and 
in turn the artifacts will be canceled during the gradient 

updating process. We also observed that the amplitude of 
the LSRTM image is closer to the true reflectivity.   
 

 
 
Figure 2: (A) Marmousi reflectivity model. (B) RTM image of 
Marmousi synthetic data by (C) LSRTM image after 20 iterations. 
 
Data residual level and convergence rate are good 
indicators for LSRTM quality. Figure 3 shows the data 
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residual for one shot gather after 20 iterations. The most 
dominant results are removed. Figure 4 shows the 
convergence rate for 20 iterations of LSRTM. The residual 
levels reduce very fast for the first several iterations, and 
the rate slows for later iterations. This indicates that the 
dominant events can be matched well between the synthetic 
data and the input data within first few iterations.  
 

 
Figure 3: (A) One shot gather of synthetic input data (B) Data 
residual of LSRTM for the 20th iteration.  
 
 
 

 
 
Figure 4: Data residual convergence rate for first 20 iterations. The 
data residual is normalized by original input data..  
 
Getting correct data residual is a key step for successful 
LSRTM. However, in practice the data subtraction is not 

trivial. There are several issues that need to be considered 
for data residual calculation. 
 
 
Field data practice 
 
Even though the synthetic example provided very 
encouraging results, there are still many obstacles which 
need to be overcome for practical applications. To get more 
insight, we need to revisit the equations listed above. In 
order to minimize the objective function p(m) described in 
Equation 3, we need the right side of Equation 1 (Lm) to be 
able to reproduce the field data 

0d , which is not easy to do. 

For example, the real earth is much more complex than 
current commonly used wave propagation media. To avoid 
obtaining the wrong image, routine RTM preprocessing 
will still be needed. For example if we use acoustic RTM, 
the visco-elastic property of the earth cannot be simulated 
by our synthetic data generator. In turn, several modes, 
such as converted waves will be absent from the synthetic, 
modeled data. Thus these modeled modes will need to be 
removed during processing. 
 
In the meantime, the amplitude of the synthetic data is 
dependent upon the user defined source strength, which 
usually cannot match the real data for long wavelengths. 
Fortunately, for the LSRTM approach the amplitudes are 
different at the wavelet level, and only these differences 
should be used to tune up the images. Thus proper scaling 
of the synthetic data is needed for data residual calculation.  
 
Deciding which type of source wavelet to use is another 
challenge.  In the ideal case, LSRTM prefers a consistent 
source wavelet; therefore, proper preprocessing on field 
data, such as deconvolution and reshaping source wavelets, 
is needed. Also, we need to ensure the field data and 
synthetic data have a similar frequency range, by filtering 
both of them. Therefore, for practical application, Equation 
3 needs to be modified as 
 

||||)( 0dpLmpmp Fm   

 
where pm indicates the preprocessing of and proper scaling 
and filtering of the synthetic data to match the observed 
field data. pF is the preprocessing for the observed field 
data. 
 
Another important issue which needs to be addressed is the 
velocity; since in practice the velocity error is unavoidable. 
The good news is that if we assume the migration and 
forward modeling are adjoint procedures, and the same the 
velocity model is used, the kinematic errors should be 
minor in the time domain where the data residual is 
calculated. Unfortunately for complex structure, velocity 
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errors could introduce defocusing and in turn introduce the 
mismatch between the synthetic modeled data and the 
observed field data. 
 

 
 
Figure 5: Migration results of a field data set from the Gulf of 
Mexico: (A) Conventional RTM. (B) LSRTM after 10 iterations. 
(C) Zoom-in view of RTM image in shallow part marked with red 
box in (A). (D) Zoom-in view of LSRTM image in shallow part 
marked with red box in (B). (E) Zoom-in view of RTM image in 
shallow part marked with green box in (A). (F) Zoom-in view of 
LSRTM image in shallow part marked with green box in (B).  
 

 
Both RTM and LSRTM algorithms are applied on a field 
data set from the Gulf of Mexico. Salt structure introduces 
challenges for salt boundaries and subsalt images. The 
RTM image is shown in Figure 5A. Due to poor 
illumination, the sediments below the salt are poorly 
imaged. The LSRTM image after 10 iterations (Figure 5B) 
shows improvement in the subsalt images; and the apparent 
amplitudes of the subsalt reflectors are more closely 
aligned with the geological reflectors (Figure 5F). At the 
shallow part of the conventional RTM image (Figure 5C), 
some areas are not imaged well, due to the acquisition 
footprint. In the LSRTM image (Figure 5D), the survey 
footprints are removed and the amplitudes are more 
balanced. 
 
 
Conclusion 
 
A time domain, production-ready 3D LSRTM is developed. 
From both the synthetic and field data examples shown 
here, LSRTM is proven to be useful in providing close to 
true amplitude reflectivity images; in turn improving the 
image resolution and suppressing the migration artifacts.  
The true amplitude reflectivity and high resolution result 
make this algorithm very attractive for certain key imaging 
uses, such as reservoir monitoring and 4D seismic 
processing. Run time is the major challenge for LSRTM. 
More works need to be done to increase the convergence 
rate.  
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