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SUMMARY

Anelastic properties of the earth cause frequency dependent
energy attenuation and phase distortion in seismic wave prop-
agation. It is preferred that these unwanted effects be corrected
in a prestack depth migration. Zhang et al (2010) introduced a
visco-acoustic wave equation in the time domain for isotropic
media. This paper extends the visco-acoustic wave equation
for anisotropic case, and develops visco-acoustic reverse time
migration algorithm for VTI medium. To validate the proposed
wave equation, wave propagation is simulated on a homoge-
neous viscous VTI medium using a finite difference method.
The wavefield snapshot shows predicted frequency dependent
attenuation and dispersion. Synthetic and field data examples
are also given.

INTRODUCTION

Some shallow geologic features such as gas chimneys can heav-
ily attenuate seismic P-waves. A seismic image below a gas
anomaly can be severely deteriorated by a decrease of overall
amplitude, a loss of high-frequency energy, and also a distor-
tion of the seismic phase. Dramatic lateral variations of shal-
low attenuation properties associated with gas can generate
strong footprints on deep seismic images, destroying AVO/AVA
effects and making the interpretation more difficult. It is there-
fore very important to compensate these attenuation effects in
order to improve our final seismic products (Yu et al., 2002).

Early work to compensate for seismic attenuation was per-
formed in the unmigrated data domain by an inverse Q-filter
(Bickel and Natarajan, 1985; Hargreaves and Calvert, 1991,
Wang, 2006). These methods were based on a one-dimensional
backward propagation and cannot correctly handle real geo-
logical complexity. Since anelastic attenuation and dispersion
occur during the wave propagation, it is natural to correct them
in a prestack depth migration (Zhang et al., 2010).

Much effort has been put forth in developing an inverse Q-
migration using one-way wave equation migration (Dai and
West, 1994; Yu et al., 2002). Zhang et al (2010) derived a
visco-acoustic wave equation in the time domain and applied
it in a prestack reverse time migration to compensate for the
anelstic effects in the seismic data. The equation is applicable
to isotropic media.

Recently, anisotropic reverse time migration is considered a
standard tool for subsalt imaging. To compensate for seis-
mic attenuation in anisotropic media, the corresponding visco-
acoustic wave equation has to be derived. In this paper, we
extend Zhang et al’s equation to anisotropic media. The equa-
tion is numerically solved to show that it can properly simulate
for the frequency dependent absorption and dispersion effects.
Later, we show synthetic migration example and field data ex-

ample.

METHOD

The dispersion relation of a linear visco-acoustic medium can
be written by
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2
)
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where k and ω are the spatial wavenumber and angular tempo-
ral frequency, respectively. The frequency dependent velocity
v is given by

v = v0|
ω
ω0
|γ (2)

where ν0 is the reference velocity at the reference frequency
ω0 and the dimensionless quantity γ is defined by
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1
π

tan−1(
1
Q
)≈ 1

πQ
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with Q being the quality factor (Kjartansson, 1979).

Assuming the attenuation (1/Q) is small, Zhang et al (2010)
derived the time domain equivalent of the above as

ptt +
Φ
Q

pt +Φ2 p = 0 (4)

where the subscript t indicating the partial derivative operation
with respect to time of the pressure field p, and Φ is a pseudo-
differential operator in the space domain defined by
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(√
−v2

052
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) 1
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Equation (4) is a visco-acoustic wave equation for an isotropic
media. The second term contributes wavefield attenuation.
Therefore removing the lossy term as

ptt +Φ2 p = 0 (6)

we get frequency dependent velocity dispersion only (dispersive-
acoustic wave equation). On the contrary, if we preserve the
lossy term but modify the dispersive term as

ptt +
Φ
Q

pt − v252 p = 0 (7)

we get attenuation only (lossy-acoustic wave equation). Chen
and Holm (2004) suggested fractional Laplacian time-space
wave equation for lossy media exhibiting arbitrary frequency
power-law dependency. Equation (7) corresponds to their Equa-
tion (21) with the power constant y = 1.

Figure 1 shows four wavefield snapshots of a two-dimensional
homogeneous isotropic model computed by a finite-difference
method. The computing parameters are 3000 m/s velocity, Q
value of 20, 10 m grid spacing, 20 Hz peak frequency Ricker
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wavelet source, and 15 Hz reference frequency, The four snap-
shots represent the wavefield of (a) acoustic wave equation,
(b) dispersive-acoustic wave equation, (c) lossy-acoustic wave
equation, and (d) visco-acoustic wave equation, respectively.
Comparing the snapshots we notice that the changes from (a)
to (b) and from (c) to (d) are not so significant than the changes
from (a) to (c) and (b) to (d). This means that dispersion has
less impact than the attenuation.

Figure 1: Wavefield snapshots from four different acoustic
wave equations: (a) acoustic, (b) dispersive-acoustic, (c) lossy-
acoustic, and (d) visco-acoustic.

Figure 2 shows the frequency spectra of Figure 1, where the
analysis windows are indicated by colored rectangles. The
more significant feature of the plot is the frequency dependent
wavefield attenuation.

Figure 2: Frequency spectra of wavefields shown in Figure 1.
The analysis windows are indicated by colored rectangles.

A pseudo-acoustic TI wave equation based on Alkhalifah’s

zero shear wave vertical velocity approximation is given by
Fletcher et al (2009)

ptt − v2
xH2 p− v2

z H1q = 0 (8)

qtt − v2
nH2 p− v2

z H1q = 0.

where vz is the velocity along the symmetry axis, vx is the ve-
locity in the symmetry plane, and vn is the normal moveout
velocity. The three velocities have following relationship.

vx = vz
√

1+2ε

vn = vz

√
1+2δ

where ε and δ are anisotropic parameters defined by Thomsen
(1986). Here the differential operators, H1 and H2 are given
by

H1 = sin2 θ cos2 φ∂xx + sin2 θ sin2 φ∂yy + cos2 θ∂zz

+ sin2 θ sin2φ∂xy + sin2θ sinφ∂yz + sin2θ cosφ∂xz

H2 = ∂xx +∂yy +∂zz−H1

where θ is the dip angle and φ is the azimuth.

Assuming γ << 1, we modify Equation (8) to include the at-
tenuation and dispersion so that it can be a visco-acoustic TI
equation as follow:

ptt +
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Q
pt +Φ2
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z q = 0 (9)
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The three psedo-differential operators Φx, Φz, and Φn are de-
fined by
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where vx0, vz0 and vn0 are reference velocities of vx, vz, and vn
respectively.

As described in isotropic case, the second terms of Equation (9)
control attenuation while the third and fourth terms affect dis-
persion. In other words, the dispersive TI equation is

ptt +Φ2
x p+Φ2

z q = 0 (11)

qtt +Φ2
n p+Φ2

z q = 0.

and the lossy TI equation is

ptt +
Φx

Q
pt − v2

xH2 p− v2
z H1q = 0 (12)

qtt +
Φz

Q
qt − v2

nH2 p− v2
z H1q = 0.
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Figure 3 shows four wavefield snapshots of a two-dimensional
homogeneous visco-acoustic TI model computed by a finite-
difference method. The computing parameters are v = 3000
m/s, ε = 0.24, δ = 0.1, Q = 20, 10 m grid spacing, 20 Hz
peak frequency Ricker wavelet source, and 15 Hz reference
frequency. The dip angle θ and azimuth φ are zero. The four
snapshots represent the wavefield of (a) TI wave equation, (b)
dispersive TI wave equation, (c) lossy TI wave equation, and
(d) visco-acoustic TI wave equation, respectively. Comparing
the snapshots we notice that the changes from (a) to (b) and
from (c) to (d) are not so significant than the changes from (a)
to (c) and (b) to (d). This means that dispersion has less impact
than the attenuation.

Figure 3: Wavefield snapshots from four different TI wave
equations: (a) TI, (b) dispersive TI, (c) lossy TI, and (d) visco-
acoustic TI.

Figure 4 shows the frequency spectra of Figure 1, where the
analysis windows are indicated by rectangles. Again in this
example we see there is significant frequency dependent wave-
field attenuation.

During the migration, velocity dependent dispersion changes
the reflection depth. This is an unwanted effect. We don’t want
to change the reflection position, but only to compensate for
the attenuation. Therefore the lossy TI equation is more useful
than the visco-acoustic TI equation. To compensate the atten-
uation, the sign of the second term of Equation (12) should be
changed, i.e.,

ptt −
Φx

Q
pt − v2

xH2 p− v2
z H1q = 0 (13)

qtt −
Φz

Q
qt − v2

nH2 p− v2
z H1q = 0.

The equation is applied both on source wavefield and on re-
ceiver wavefield. This amplifies high frequency component
and results instability. Dai and West (1994) suggested adjust-
ing the working frequency band and/or modifying the attenua-

Figure 4: Frequency spectra of wavefields shown in Figure 3.

tion coefficient in their inverse Q migation. We suggest limited
high frequency filtering, and only apply the high frequency fil-
tering on (pt) which is the wavefield attenuation term related
to viscosity, and without touching the wavefield propogation
term.

EXAMPLES

Figure 5a shows a 12 x 6 km two-dimensional earth model of
three horizontal layers and a gas pocket whose physical prop-
erties are listed in Table 1. A total of 200 synthetic shots were
computed by a finite-difference method based on Equation (9).
The receiver offsets are 0 to 2980 m incrementing 20 m. The
shot spacing was 50 m.

layer v (m/s) ε δ Q
1 1500 0 0 500
2 2000 0.3 0.2 100
3 2500 0.2 0.1 1000

gas pocket 1600 0.5 0.25 20

Table 1: Physical properties of the model in Figure 5a.

The synthetic data was migrated without Q compensation. Fig-
ure 5b shows the result. Because of the viscosity, the regu-
lar RTM produces a distorted image at the bottom of the gas
pocket and at the third layer right below the gas pocket, with
dimming of amplitude of distorted phase as compared with the
other parts of image without much attenuation effects. Fig-
ure 5c is Q-RTM result using Equation (13) Clearly our Q-
RTM is able to compensate for the attenuation effect, with
more uniform amplitude and corrected phase (zero-phase ev-
erywhere).

Figure 6a shows a section of VTI reverse time migration im-
age of Gulf of Mexico data. The section contains irregular
reflectors at depth 3000 meters causing amplitude imbalance
to the deeper part. Because the cause of amplitude attenuation
is diffraction rather than viscosity, we tried to recover the at-
tenuation only. A Q model was determined by analyzing the
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amplitude and frequency content of the first arrivals contribut-
ing the flat reflection at 4 km. Figure 6b is the zoomed version
of Figure 6a and Figure 6c is the result of Q compensated re-
verse time migration using lossy TI equation. The improved
areas are highlighted by yellow circles.

Figure 5: A synthetic Q RTM example. (a) two-dimensional
gas pocket bearing earth model, (b) Regular RTM image with-
out Q compensation, (c) New RTM with Q compensation.

CONCLUSION

We have proposed a new visco-acoustic TI propagator for an-
isotropic media. The equation is intuitively extended from
the visco-acoustic equation for isotropic media introduced by
Zhang et al (2010). Numerical tests on homogenous two di-
mensional model show that the proposed anisotropic visco-
acoutic equation gives frequency dependent attenuation and
velocity dispersion as in the isotropic visco-acoustic equation.

Surface seismic data is attenuated both from downgoing and
upgoing paths. To compensate for the attenuation, the lossy
term of the visco-acoustic equation is negated. However, the
resulting wave equation is unstable as in other inverse Q mi-
grations. We workaround the instability by a limited high-cut
filtering technique, i.e., applying the high-cut filter on the lossy
term only.

A synthetic example of a gas pocket model shows that Q-RTM

produces better structural definitions and more balanced am-
plitude beneath the gas pocket. A field data example from the
Gulf of Mexico is given.

Figure 6: A VTI migration example. (a) migration without
Q, (b) zoomed migration of (a), (c) zoomed migration with Q
compensation. The improved areas are highlighted by yellow
circles.
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