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Benefits of using dense OBN for exploration: an 
example from Utsira using AI and machine learning
Sindre Jansen1*, Adriana Citlali Ramirez1, David Went1 and Bezhad Alaei2 demonstrate the benefits 
of using angle-rich, full-amizuth OBN data, and machine learning in the South Viking Graben.

Abstract
The first example of artificial intelligence (AI) geological 
interpretation on a large scale, densely sampled ocean bottom 
node (OBN) exploration dataset, Utsira OBN, is presented 
here. This entirely new suite of derivative seismic products 
provides enhanced exploration insights through AI, espe-
cially in areas where infrastructure led exploration (ILX) 
is drawing increased focus from the E&P industry. This 
work is complemented with a velocity model built with the 
latest processing technology: ultra-long offset and reflection 
FWI combined with tomography and anisotropy updates. 
The toolboxes, processing versus AI/ML, do not exclude or 
replace each other; a combined analysis can extract added 
value and reduce uncertainties. Such analysis is presented  
here.

Introduction
Derisking by amplitude versus offset (AVO) is common within 
the South Viking Graben. The Utsira OBN survey, located in this 
area, provides a wide-angle range allowing for accurate AVO. Its 
full-azimuth nature and ultra-high density provides high signal-
to-noise ratio and rich frequency content, especially at the low 
end of the spectrum, which not only helps in the model building 
and imaging but in the stability of AVO.

The purpose of this paper is to demonstrate some of the bene-
fits of angle-rich, full-azimuth OBN data. The analysis presented 
here focuses on Utsira OBN and uses: 
1) The imaged cubes (full stack and angles stacks),
2)  Well data within the area covered by the survey,
3)   Machine learning (ML) and artificial intelligence (AI) well and 

seismic analysis, interpretation, and property prediction, and

Figure 1 Outline of the Utsira OBN receiver carpet 
(black), active production licences (yellow), TGS data 
(purple) and fields and discoveries.
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linked to the quality of seismic data leading to the imaging 
challenge.

Seismic imaging: Conventional narrow azimuth streamer 
data is challenged by insufficient illumination of the subsurface 
targets contributing to residual free-surface and interbed multiples, 
dimming, pull-up/pull-down effects and migration artifacts – 
including accurate placement of intrusive sands also known as 
injectites or v-brights. The full-azimuth Utsira OBN survey is 
designed to minimize the subsurface imaging challenges observed 
within the area relating to shallow velocity contrasts in the 
quaternary channels, irregular high acoustic impedance injectites 
in the Tertiary, and complex fault patterns through all target levels.

Rock physics and AVO: AVO forms the basis for rock and 
fluid property prediction and is considered a key derisking tool 
in areas where target zones have measurable AVO effects like in 
the Utsira OBN area. AVO class IIp anomalies are commonly 
observed for HC-filled reservoirs, as predicted by forward 
models (Figure 2). As highlighted in the figure, angles in range 
0 to 60 degrees are necessary to measure both the intercept and 
the elastic effect. Legacy vintage streamer data lacks zero angle 
measurements because the source is in front of the streamer and 
not above. In addition to this, limited streamer length and azimuth 
coverage restricts the far-angle measurements to a maximum ~45 
degrees. OBN data offers a wider range of acquisition angles 
at full azimuth which allows for a more thorough evaluation of 
reservoir AVO effects including azimuthal anisotropy

In total, 70 vintage 3D seismic surveys intersect the Utsira 
OBN survey outline. Initially, exploration was done using 2D 
seismic data. In 1975, the first commercial 3D seismic survey 
was acquired in the North Sea (Davies et al., 2014). Later, 3D 

4)  A velocity model built using ultra-long offsets and reflection 
FWI.

The results of the AI/ML toolbox are shown to provide beneficial 
complementary views of the subsurface to those obtained by 
more standard methods (albeit modern) such as the velocity 
model built to image the data. The combination of toolboxes and 
analysis in this work aims at providing enhanced exploration 
insights, including observations that can help to derisk subsurface 
sedimentology and potential fluid content.

Utsira OBN and the survey area
During 2018 and 2019 AGS and TGS acquired the Utsira OBN 
survey in the South Viking Graben. The outline is in Figure 1 
and represents the largest densely sampled OBN survey ever 
acquired for exploration purposes. The survey area covers more 
than 2000 km2 across the Gudrun Terrace and parts of the Utsira 
High. It includes a variety of play models ranging in stratigraphy 
from Tertiary to Paleozoic basement.

The South Viking Graben is considered mature with four 
producing assets (Gudrun, Ivar Aasen, Gina Krog and Enoch) 
within the Utsira OBN survey area: Glitne, which has ceased 
production and is abandoned, and six discoveries likely to be 
put on production within the next 10 years. Exploration success 
within the survey area started in 1975 with the discovery of the 
Gudrun Field, which began production in 2014. Since 2000, the 
four producing assets combined with the shut-in Glitne Field 
have combined investments of approximately $11.6 billion (NPD 
2021). The fields have produced more than 450 Mmbbl of oil 
equivalents. To maintain the economics of the projects and cap-
italize on the existing investments, the operators of these assets 
are expected to focus on enhancing production and exploring 
for nearby hydrocarbon accumulations with low-cost tie-back 
possibilities.

A good understanding of the reservoir is key for both 
enhanced production and successful exploration for hydrocar-
bon accumulations. Below, we list three contributing factors 
complicating the exploration and production activity within the 
Utsira OBN survey area. These challenges are interlinked and 
relate to:

Reservoir quality and connectivity: Gina Krog, Gudrun, 
Ivar Aasen, and Enoch all encounter uncertainties related to 
volume, reservoir quality, phase, and connectivity (see Table 
1). Improved understanding of the reservoir can be achieved 
by using well information and integrating the observations 
with geophysical methods such as seismic interpretation, model 
building and inversion. To this we can add prediction based 
on ML and AI. Accuracy of the respective methods is directly 

Field Reservoir challenge

Gina Krog – Mid Jurassic Complex segmented reservoir with poor to moderate quality.

Gudrun – Mid to late Jurassic Complex reservoir with moderate quality and key uncertainty relating to sand distribution 
and connectivity, especially within the Late Jurassic Draupne Fm. 

Ivar Aasen – Late Triassic to Mid Jurassic Segmented with moderate-to-good quality. 

Enoch – Paleocene to Eocene Varying reservoir quality. 

Table 1 Producing fields, main reservoir interval and summary of reservoir challenges as listed on the NPD website.

Figure 2 Forward model for gas vs brine-filled Sleipner Fm in well 16/1-11 (Ivar 
Aasen).
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limited to 6.7 km. To extract further value from the Utsira OBN 
dataset, TGS has continued reprocessing using dynamic matching 
FWI (DM FWI). OBN surveys naturally measure ultra-long off-
sets that can be extracted from the data with deblending technolo-
gy (offsets of up to 30 km were extracted after deblending). Utsira 
OBN was acquired in an area with a bathymetry averaging 110 m. 
A feasibility analysis and the FWI tests carried out by Ramírez 
et al. 2020, showed that the main diving wave contribution was 
contained within split-spread maximum offsets of 17 km. Thus, 
in the reprocessing, this offset range was used in a first pass of 
DM FWI that provided main updates to the velocity model down 
to ~5-6 km (depending on the geology, this velocity update can 
reach beyond 7 km). Figure 4A (top) is an example of the velocity 

streamer seismic became standard, varying from narrow azimuth 
3D surveys to more recently multi-azimuth streamer surveys. A 
split spread test (~200 km2) was acquired in 2018. Conversely, 
full-azimuth OBN 3D seismic data in the area was limited to a 4D 
over the Ivar Aasen Field until the acquisition of the Utsira OBN. 
Figure 3 compares inlines from 2004 towed-streamer data and 
the Utsira OBN data. It highlights the significant improvements 
obtained through both acquisition and processing advances. The 
water depth is approximately 110 m and the seismic image shows 
the producing Gudrun Field and the Sigrun discovery at around 
4 km depth.

The regional imaged cube was processed with modern 
technology, including FWI up to 5Hz, but with maximum offsets 

Figure 4 FWI-based velocity model using ultra-long offsets (17 km) and DM FWI. A.1 focusing on the colourbar range to emphasize the injectites, and A.2 focusing on the 
colourbar to illustrate the Mesozoic layering and faulting.

Figure 3 Example line through Gudrun East Field and 
Sigrun discovery comparing Utsira OBN (left) to a 
released 2004 3D streamer (right) and the respective 
imaging of injectites (red arrows) and complex 
faulting.
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Missing well logs and 3D property prediction
Prediction of reservoir properties using seismic data can be 
carried out using ML (e.g. Sun et al., 2021; Wu et al., 2021). 
Figure 6 shows the workflow that we utilized to predict reser-
voir properties from OBN seismic data in this study.

We have then used 1D convolutional Neural Networks 
(CNN) to predict elastic and reservoir properties from OBN 
seismic data. The prediction accuracy depends on the quality of 
the labels, and seismic data as well as the network architecture. 
Deep learning algorithms require enough data (in this case 
number of wells used in training) to build successful models to 
predict target properties. In order to provide good quality labels 
for training with high coverage, we have performed ML on 
well data to predict both elastic and reservoir properties (first 
part of the workflow, Figure 6), to fill in gaps, and increase 
the depth coverage of logs that are used as labels or targets in 
seismic-scale property prediction.

Upscaling logs from well scale to seismic scale has been 
tested using different approaches. For elastic logs, lowpass 

update (dV) after the first frequency band of FWI updates with 
diving waves, using offsets from 0 to 7 km (A.1) versus 0 to 
17 km (A.2). Diving wave FWI was followed by tomography and 
anisotropy updates, and a reflection pass of DM-FWI. The goal of 
the model-building strategy was to extract a more accurate model 
than the regional one and to better characterize complex and 
high-contrast anomalies such as injectites. The latter DM FWI 
velocity model in Figure 4B (bottom) captures both velocity con-
trasts associated with the injectites (B.1) and the deeper Mesozoic 
layering and faults (B.2).

ML and AI for geobody and property prediction
Some 156 wells have been drilled within the Utsira OBN receiver 
area, and 106 of these are released. TGS and Earth Science 
Analytics (ESA) have initiated a ML/AI project on the Utsira 
OBN 3D survey. The project has three main objectives: fault 
and injectite modelling, missing well logs prediction, and 3D 
property prediction of Vp, Vs, density, and four lithology types. 
The outcome shows a good correlation when benchmarked 
against the Utsira OBN seismic interpretation, wells, and the DM 
FWI velocity model.

Methods
Fault and injectite modelling using ML
Structural seismic interpretation was performed on the Utsira 
OBN survey using ML methods within cloud-native EarthNET 
platform. The purpose was to output faults and injectite geo-
bodies. The workflow followed a classical ML scheme, starting 
by applying a pre-trained fault and injectite model to the Utsira 
OBN data, followed by labelling (interpretation) and eventually 
training the models by ML to complete the exercise. Figure 5 
shows an example from each fault modelling step leading to the 
final output model.

Figure 5 Utsira OBN inlines example (A), applying pre-trained fault model (B), additional interpretation/labelling (C), ML and output (D).

Figure 6 Workflow used to predict reservoir properties from wells and the Utsira 
OBN data. Monte Carlo (MC) drop out applied in the model training.
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used in the training. For model hyperparameters tuning, three 
options were available including random search, hyperband, and 
Bayesian optimization. The main loss-function used in the train-
ing was mean square error. However, several other loss-functions 
such as log cosh function, Huber loss, mean absolute error were 
available. RMSprop, ADAM, and NADAM optimizers were test-
ed and used for different training sets. The option to give higher 
weight to model optimization in target formations was also used. 
Finally, we built blind models using one well held out to verify 
the performance of each model.

Figure 8 shows an example of acoustic impedance training 
and the predicted results along an inline crossing the well.

Results
Fault and injectite modelling
The legacy EarthNET fault and injectites models were trained 
using released 3D streamer seismic data from Diskos, with no 
previous experience on full-azimuth OBN data. Despite this fact, 
Figure 5B shows that the pre-trained model initially picked a 
high concentration of the Eocene and Tertiary polygonal faulting 
highlighted with red fault sticks. An interpretation of these faults, 
also highlighted in Figure 9.A, is important because they may 
provide migration pathways for hydrocarbons (Lonergan et al. 
1999). Studies also suggest their absence in certain areas may 
indicate underlying sands.

Due to the nature of the OBN data compared to the streamer 
data, additional labelling and ML was required for the deeper 
Mesozoic faults. Labelling of five inlines and crosslines before 
ML provided a fault model for the deeper Mesozoic. The label-
ling process is shown with blue fault sticks in Figure 5C and the 
final after ML is shown with yellow fault sticks in Figure 5D. 
The Mesozoic faults are important to understand for compart-
mentalization, migration pathways, structural regimes and their 
implications on sediment transport.

We have identified two main intervals of Tertiary intrusive 
injectites based on cross-cutting relationships and stratigraphic 
thicknesses within the South Viking Graben. The first event of 
injectites likely occurred in the Late Eocene period and intruded 
Mid-Eocene strata, and the second event occurred around late 

filters as well as Backus averaging were tested. The dominant 
frequency of the OBN seismic data at target intervals was used 
as an indication to set the upscaling parameters. Figure 7 shows 
an example of an acoustic impedance log in one of the wells 
before and after a low pass 40Hz filter. We sliced the seismic 
data around wellbores to generate training sets from seismic 
volumes. Immediate neighbouring trace or traces around the 
wellbore were selected at each depth/time. The radius or number 
of traces around the wellbore was used as a parameter to build 
the seismic training data for each well. An important point 
to consider when adding more traces around the wells was 
structural complexity at wellbore location.

From the regional Utsira OBN deliverables (2020), seven 
features were used for training in this study including one 
interval velocity volume, full-stack and five angle stacks.

The deep neural network architecture used in the training pro-
cess is 1D CNN and it has 3 layers (Figure 6) and 8 to 12 filters. 
The hyperparameters used for most of the training examples are 
a batch size of 64 and 32 samples, 256 and lower samples for 
each sequence, 0.1- 0.2 noise. A range of 200 to 500 epochs was 

Figure 8 Example from acoustic impedance 
training and predicted results along a well.

Figure 7 Acoustic Impedance log in a well before (left) and after (right) a low pass 
40Hz filter.
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intercept versus gradient plot in Figure 9C.2. It illustrates the 
strong acoustic impedance contrast associated with the top of 
the injectites by a positive-intercept-negative-gradient response. 
The base of the injectites have been modelled shown with a 
negative-intercept-positive-gradient response.

Several wells have encountered brine-filled injectites. Pro-
spective injectites remain under-explored with only one discovery 
in the Utsira OBN area. Figure 10 compares the DM FWI velocity 
model to the velocity model predicted using ML and AI. The 
depth slices intersect a drilled brine-filled injectite (A.1 and A.2) 
and lower velocity injectites (B.1 and B.2) in an area of possible 
HC-filled injectites. Both the DM FWI (left) and AI-predicted  
velocity model (right) support observations indicating higher 
velocity associated with unprospective injectites.

Oligocene period and intruded Mid-Eocene strata. Generally, 
brine-filled injectites show high acoustic impedance contrasts 
relative to the surrounding host rock, leading to a hard-to-soft 
seismic response at top-to-base, respectively. Changing the fluid 
content from brine to hydrocarbons lowers the velocity and den-
sity, affecting the resulting seismic response. Figure 9.B shows 
that the processed DM FWI velocity model captures velocity 
anomalies associated with the injectites, and the ML-modelled  
injectites highlighted in red support their presence. Manual inter-
pretation of the injectites would be extremely time consuming 
due to their high concentration, while modelling using ML proves 
to be efficient and effective.

Figure 9C.1 shows the Utsira OBN angle stacks from 0 
to 60 degrees. Angle stacks have been used to calculate the 

Figure 9 Modelled faults (A), injectites (B, red) 
overlain DM FWI velocity model, Utsira OBN 
angle stacks (C.1) and intercept versus gradient 
plot of modelled injectites (C.2).

Figure 10 Depth slices(~1600 m) comparing 
brine-filled injectites (A) and possible HC-filled 
injectites (B) using DM-FWI velocity model (1) 
and ML-predicted velocity model (2).



SPECIAL TOPIC: DELIVERING FOR THE ENERGY CHALLENGE: TODAY AND TOMORROW

F I R S T  B R E A K  I  V O L U M E  3 9  I  O C T O B E R  2 0 2 1 5 1

with generally poor continuity on full-stack data. Several wells 
have penetrated the Grid Formation channel sands. The well 
used in Figure 11 and Figure 12 measures an average sand 
porosity of 35% and represents a blind test in the AI property 
prediction.

Predicting Eocene channel sands
The Grid Formation within the Hordaland Group was deposited 
during Mid to Late Eocene, and partly consists of amalgamated 
sand bodies likely to be derived from the East Shetland Plat-
form (NPD, 2021). It is shown in Figure 11A.1 as a package 

Figure 12 Top figure shows the blind test well in Figure 11 with measured gamma, sonic and density. The respective AI-predicted properties are highlighted along the well 
bore (top) and depth slice through the penetrated channel (bottom) using the same colourbar.

Figure 11 Utsira OBN full-stack line example 
(A.1) intersecting the blind test well penetrating 
Grid Fm channel sand. Crossplots show the 
logged Grid Fm sand velocity vs density (B.2), 
and the logged gamma vs calculated acoustic 
impedance (B.2).
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erage is for derisking HC-filled Jurassic reservoirs with an 
AVO Class IIp response, and also low acoustic impedance 
Eocene sands. Reprocessing dense OBN data using 17 km 
offsets and dynamic matching full waveform inversion (DM 
FWI) provide a detailed velocity model down to 6 km, ena-
bling derisking Tertiary injectite fluid content and Eocene 
reservoir sand presence – both of which have been limiting 
risk factors when exploring using conventional streamer 
data.

2)  Injectite and fault modelling using the cloud-native Earth-
NET platform has proven robust and efficient, yielding 
accurate models for improved understanding of migration 
pathways, compartmentalization, and reservoir presence.

3)  AI and ML property predictions of Vp and density using 
wells and the OBN dataset show high accuracy when com-
pared against wells and the DM FWI velocity model. Strong 
capabilities of derisking Eocene channel sands have been 
demonstrated by benchmarking the results against a blind 
test well and the DM FWI velocity model.

Future work will include finalizing AI and ML property predic-
tions of shear wave (Vs) for fluid detection, and also facies to 
further derisk the reservoir presence. Reprocessing the OBN data 
using recorded shear wave will aim to provide a complementary 
dataset to the property predictions and further derisking of the 
subsurface in the study area.
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